Как научиться быстро считать в уме сложные числа

Как научиться считать в уме? Очень длиннопост.

Уважаемые полуночники.
Сейчас я попробую предоставить вам информацию, как научиться считать в уме, не задействуя хитроумных формул, а также поделюсь с вами моими личными наблюдениями, при которых даже слабый в счетоводстве человек при должной тренировке сумеет считать быстро и без особых напрягов.

Суммирование и вычитание:
Если у вас есть неких два числа, то рекомендую считать числа по порядку, то бишь не пытаться суммировать (вычесть) сразу два числа полностью, а действовать по частям. Пример:
3567+8654=?
Сначала к числу 3567 прибавляем 8000, получается 11567 (его мы запоминаем).
Далее уже к 11567 прибавляем 600, выходит 12167.
Таким образом, дальше выходит 12217, и в конце 12221.
Приведенный способ хорош тем, что первое число в памяти можно просто заменить получившимся, а второе число сокращается на одну цифру)
Данный метод подходит и для вычитания.
Пример с вычитанием:
5420-3266=?
Делаем все в такой же очередности.
5420-3000=2420,
2420-200=2220,
2220-66 (одно дополнение при вычитании, которое вполне облегчает счет. Разъяснить словами не могу, поэтому надеюсь, что поймете на примере)
2220-20-46=2200-46=2154.
Деление:
Здесь уже все гораздо сложнее, т.к. придется запоминать одновременно большее количество цифр. Здесь все зависит от того, до какой цифры после запятой вам необходимо посчитать.
Здесь легче объяснять сразу на примере.
Допустим, вам нужно разделить 1684 на 36.
Первым делом, если есть возможность мы делим наименьшее из двух чисел на множители: в нашем случае 36=2233.
Далее берем первое число и делим на наименьший возможный множитель: 1684/2=842, далее продолжаем в том же духе, 842/2=421. Полученное число 421 уже не делится на 3, и мы начинаем основное деление. И вот у нас остались такие цифры, 421 делить на 9.
Сходу берем навскидку цифру, умножение которого на знаменатель может нам дать необходимое число (цифра должна делиться на 10, 100, 1000 и т.д.).
Я, к примеру, возьму цифру 50, 9
50=450. 450 нам не подходит, поэтому берем 40, 409=360, вычитаем из 421 наши 360 (421-360=61), запоминаем 61, откладываем в памяти 40, и считаем дальше. Опять же навскидку представляем число, перемножение которого на 9 может нам дать необходимые нам 61. Не хочу затягивать сильно тему, и поэтому буду брать только необходимые числа. В нашем случае это 6, 61-96=61-54=7. Делаем, зарубку, что осталась цифра 7, запоминаем приблизительный результат 46, и можно продолжать. Т.к. дальше 7

1. Умножаем на 11
Все мы знаем, как быстро умножить число на 10, нужно лишь добавить ноль в конце, но знаете ли вы, что есть фишка как легко умножить двузначное число на 11?
Допустим, нам нужно умножить 63 на 11. Возьмите двузначное число, которое нужно умножить на 11 и представьте между его двумя цифрами место:
6_3
Теперь сложите первую и вторую цифру этого числа и поместите в это место:
6_(6+3)_3
И наш результат умножения готов:
63*11=693
Если же результат сложения первой и второй цифры двузначное число, вставляйте только вторую цифру, а к первой цифре исходного числа прибавляйте единицу:
79*11=
7_(7+9)_9
(7+1)_6_9
79*11=869

2. Быстрое возведение в квадрат числа, оканчивающегося на 5
Если вам нужно возвести в квадрат двузначное число, заканчивающееся на 5, то вы можете сделать это очень просто в уме. Умножьте первую цифру числа на саму себя плюс единица и добавьте в конце 25, и это всё:
45*45=4*(4+1)_25=2025

3. Умножение на 5
Для большинства людей умножение на 5 не составляет труда для небольших чисел, но как быстро считать в уме большие числа, умноженные на 5?
Вам нужно взять это число и разделить на 2. Если результат целое число, то добавьте к нему 0 в конце, если нет, отбросьте остаток и добавьте 5 в конце:
1248*5=(1248/2)_(0 или 5)=624_(0 или 5)=6240 (результат деления на 2 целое число)
4469*5=(4469/2)_(0 или 5)=(2234.5)_(0 или 5)=22345 (результат деления на 2 число с остатком)

4. Умножение на 4
Это очень простая и, с первого взгляда, очевидная фишка умножения любого числа на 4, но не смотря на это люди не догадываются о ней в нужный момент. Чтобы просто умножить любое число на 4, нужно умножить его на 2, а потом снова умножить на 2:
67*4=67*2*2=134*2=268

5. Вычислить 15%
Если вам нужно в уме вычислить 15% от какого-либо числа, то есть простой способ, как это сделать. Возьмите 10% от числа (разделив число на 10) и добавьте к этому числу половину от полученных 10%.
15% от 884 рублей=(10% от 884 рублей)+((10% от 884 рублей)/2)=88.4 рубля + 44.2 рубля = 132.6 рублей

6. Умножение больших чисел
Если вам нужно перемножить большие числа в уме и одно из них четное, то вы можете воспользоваться методом упрощения множителей, уменьшая четно число в два раза, а второе увеличивая в два раза:
32*125 это
16*250 это
8*500 это
4*1000=4000

7. Деление на 5
Разделить большое число на 5 в голове очень просто. Всё что нужно, это умножить число на 2 и сместить запятую на один знак назад:
175/5
Умножаем на 2: 175*2=350
Смещаем на один знак: 35.0 или 35
1244/5
Умножаем на 2: 1244*2=2488
Смещаем на один знак: 248.8

8. Вычитание из 1000
Чтобы вычесть большое число из тысячи, следуйте простой технике, отнимайте все цифры числа от 9, кроме последней, а последнее цифру числа отнимите от 10:
1000-489=(9-4)_(9-8)_(10-9)=511
Разумеется, чтобы научиться быстро считать в уме, нужно много раз попрактиковаться в использовании этих приемов, чтобы довести их до автоматизма, одноразовое прочтение оставит только нули в вашей голове.

Устный счет: как научиться считать в уме

«Математику уже за то любить следует, что она ум в порядок приводит» – говорил Михаил Ломоносов. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят вам научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Читать еще:  Как открыть аутсорсинговую IT компанию по ремонту и обслуживанию компьютеров и оргтехники

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики. Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме. И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

  • Урок 1. Внимание и концентрация при счете в уме

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Как научиться быстро считать в уме?

Как давно вы считали в уме, а не столбиком, и уж тем более не с помощью калькулятора? Между прочим, считать в уме не только модно, но и полезно: так вы развиваете краткосрочную память, концентрацию и внимание. А ещё, какой же кайф испытываешь, когда можешь посчитать, сколько тебе должны дать сдачи, пока стоишь в очереди, м-м-м…

Всего несколько месяцев ежедневных тренировок по 5-10 минут, и вы почувствуете, как ускорился ваш мозг.

Начнём с простого — сложения однозначных чисел. Научившись мгновенно складывать однозначные числа, вы сможете легко складывать и многозначные числа, потому что все расчёты сводятся к выполнению типовых действий. Вы в этом скоро убедитесь.

Сложение однозначных чисел

С примерами, результаты которых находятся в пределах 10 проблем нет. Эти комбинации чисел нужно просто запомнить, как основу основ.

А вот для примеров «с переходом через 10» уже есть методика — «опора на десяток». Суть в том, чтобы довести одно слагаемое до 10, а потом из второго слагаемого вычесть столько же, сколько мы прибавили к первому.

Например, нам нужно сложить 5 и 8:

  1. Числу 5 не хватает до 10 ещё столько же — 5.
  2. Теперь представим 8 как сумму 5 и ещё какого-то числа (это 3).
  3. И прибавим к 5 ту часть числа 8, которой недостаёт до 10, а затем и остаток. Получится 10 и 3, то есть 13.

Сложение многозначных чисел

Принцип сложения многозначных чисел — складывать друг с другом одинаковые разряды: тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами.

Например, нам нужно сложить 245 и 917:

    245 состоит из трёх разрядов — 200, 40 и 5. А 917 из 900, 10 и 7.

Сложим разрядные части друг с другом:

200 + 900 = 1100, 40 + 10 = 50, 5 + 7 = 12.

А теперь сложим получившиеся числа в обратном порядке, «закрывая» нули:

Как и со сложением, с вычитанием однозначных чисел из однозначных ничего сложного нет. А при вычитании однозначного числа из двузначного удобно пользоваться тем же правилом «опоры на десяток».

Вычитание однозначных числа

Например, нужно вычесть 13 − 7:

  1. Убираем у 13 столько, чтобы получилось 10 — то есть 3.
  2. Столько же убираем и у 7 — получается 4.
  3. Теперь просто вычитаем 4 из 10.

Вычитание многозначных чисел

Здесь всё даже проще, чем со сложением многозначных чисел, потому что на разрядные части нужно разложить только то число, которое вычитаем.

Например, нужно вычесть 734 − 427:

  1. Раскладываем 427 на разряды: 400, 20 и 7. Теперь последовательно вычитаем их из 734.
  2. Вычесть 734 − 400 очень просто, потому что действие происходит только с сотнями. Грубо говоря, мы вычитаем 4 из 7 — получаем 3, вернее, 334.
  3. С десятками всё аналогично: вычитаем 30 − 20, получаем 10 — 314.

Теперь вычитаем единицы через десяток: 314 − 7.

Убираем 4 из 314 и 7, получаем 310 − 3. Ну а тут уже совсем просто — ответ 307.

Чтобы вычитать 7, 8 и 9 было проще, часто прибегают к следующим правилам:

При отнимании 9 из числа сначала вычитают 10, а затем добавляют 1:

321 − 9 = 321 − 10 + 1 = 312

При отнимании 8 из числа сначала вычитают 10, а затем добавляют 2:

321 − 8 = 321 − 10 + 2 = 313

При отнимании 7 из числа сначала вычитают 10, а затем добавляют 3:

321 − 7 = 321 − 10 + 3 = 314

Это когда несколько раз складывают одно и то же. Например, 7 × 3 = 7 + 7 + 7 = 21.

Чтобы научиться быстро умножать любые числа в уме (кроме совсем уж космических), нужно идеально умножать однозначные числа, то есть знать таблицу умножения.

Причём идеально знать её необязательно, достаточно запомнить для себя опорные числа, которые будут помогать в вычислениях. Умножим 6 × 7. Мнемотехнически мы знаем что 6 × 6 = 36. То есть к 36 нужно прибавить ещё 6, чтобы получился ответ — 42.

Считается, что из всех примеров в таблице умножения 7 × 8 самый сложный. Чтобы запомнить ответ есть отличное правило «пять шесть семь восемь»: 56 = 7 × 8.

Умножение однозначного числа на двузначное

    В первую очередь мы раскладываем 387 на разряды — 300, 80 и 7 — и умножаем каждый из них на 8.

Начинаем с сотен: 300 × 8 — это то же самое, что умножить 3 × 8, а потом к результату дописать два нуля. То есть:

3 × 8 × 100 = 24 × 100 = 2400.

По аналогии, 80 × 8 = 640, 7 × 8 = 56.

А теперь мы складываем получившиеся числа, объединяя их по разрядам:

2400 + 640 + 56 = 2000 + 400 + 600 + 40 + 50 + 6 = 2000 + (400 + 600) + (40 + 50) + 6 = 2000 + 1000 + 90 + 6 = 3000 + 90 + 6 = 3096

Любое число легко умножить на 9: нужно просто умножить на 10 (или дописать в конце ноль), а затем отнять исходное число.

47 × 9 = (47 × 10) − 47 = 470 − 47 = 423

Некруглое число можно легко умножить на 2, сначала округлив его до удобного ближайшего значения.

Например, 237 × 2. Сначала проще умножить 240 × 2 = 480. А потом вычесть из результата 6 (3 × 2 = 6 — ведь 3 нам не хватало до 240). Итого:

237 × 2 = 240 × 2 − (3 × 2) = 476

Чтобы умножить любое двузначное число на 11, нужно сложить две цифры этого двузначного числа друг с другом, а затем вписать её между цифрами исходного числа:

Правда, если сумма двух цифр исходного числа больше 10, нужно поставить разряд единиц между цифрами исходного числа, а десяток прибавить к левой цифре:

Умножение двузначных чисел

Хотя кажется, что умножать двузначные числа — вершина ментальных вычислений, решать такие примеры не сильно сложнее, чем в предыдущем пункте. Давайте разберём на примере.

    Разобьём 34 на 30 и 4, чтобы было проще, а затем умножим каждое на 83.

83 умножить на 30 просто — это как умножить 83 × 3, а потом умножить результат ещё на 10. Как умножать однозначные и двузначные числа мы разобрались. Считаем:

83 × 3 = 80 × 3 + 3 × 3 = 240 + 9 = 249. Значит, 84 × 30 = 2490.

83 × 4 = 80 × 4 + 3 × 4 = 320 + 12 = 332.

2490 + 332 = 2000 + 400 + 300 + 90 + 30 + 2 = 2000 + 700 + 120 + 2 = 2822.

Это операция, обратная умножению. Начнём снова с самого простого.

Деление двузначного числа на однозначное

Разделим 48 : 3. Основная задача — подобрать число, которое можно умножить на 3 и получить 48. Из таблицы умножения мы помним, что единственное число, результат умножения которого на 3 в конце имеет цифру 8 — это 6. А 3 × 6 = 18. То есть, у нас остаётся 30 : 3 = 10. Итого, получается 48 : 3 = 16.

Деление многозначного числа на однозначное

Разделим 6475 : 7. В подобных примерах главная задача — «взять» максимальные «круглые» части, которые можно разделить на 6 без остатка.

  1. Выделим из 6475 самую большую часть, которую можно разделить на 7 без остатка. 6475 близко к 7000 (то есть 7 × 1000), значит, можно попробовать взять 900 × 7 = 6300. Отлично!
  2. Остаётся 175. Таким же образом, выделяем из 175 самое большое число, которое можно разделить на 7 по таблице умножения — это 140. А 140 : 7 = 20. Запомним это число и вычтем 175 − 140. Сотни в результате дают ноль, а 7 − 4 = 3. То есть остаток на данный момент — 35.
  3. Вспоминаем, что по таблице умножения 7 × 5 = 35, и складываем все получившиеся числа: 900 + 20 + 5 = 925.

Деление на двузначное число

С делением на двузначное число всё гораздо интереснее. Задача в том, чтобы найти пределы, в которых лежит результат.

Например, разделим 6351 : 73:

  1. Сначала попробуем угадать, в каком десятке находится результат. Помним, что по таблице умножения 7 × 8 = 56, поэтому пробуем умножить 73 × 80 = 5840. Это максимально близкий десяток, потому что если прибавить ещё 730 (то есть 73 × 10), получится уже 6570 — больше чем нужно. Следовательно, наше число лежит в пределах между 80 и 90.
  2. Теперь посмотрим на последние цифры наших чисел — 1 и 3. Из таблицы умножения мы помним, что только одно число при умножении на 3 на на конце даёт 1 — это 7. Пробуем умножить 73 × 7 = 511. Складываем 5840 + 511 = 6351. Ура, ответ 87!

Некруглые числа можно легко делить на 2, округляя их. Например, 358 делим на 2. Округлим 358 до 360, а затем уже его разделим на 2 — получим 130. А затем вычтем и этого числа 1 (получились в результате деления на 2 прибавленной 2).

358 : 2 = 360 : 2 − 2 : 2 = 130 − 1 = 129

Чтобы умножить число на 25, порой проще разделить его на 4, а затем умножить на 100 (или дописать два нуля):

12 × 25 = 12 : 4 × 100 = 3 × 100 = 300

Этих способов достаточно, чтобы тренироваться уверенно считать в уме. Помните, что делать это нужно регулярно, уделяя всего по 5–10 минут каждый день. Постарайтесь поймать свой ритм, чтобы решение таких задачек приносило удовольствие. И упирайте на правильность ответов, а не скорость — она придёт со временем. И не бросайте.

А если вам нужна помощь в решении более сложных задач, которые уже нельзя просчитать в уме, вам с радостью помогут специалисты Мультиворка

10 СПОСОБОВ как БЫСТРО СЧИТАТЬ В УМЕ!

Способность мгновенно, легко и быстро считать – одна из определяющих вашего успеха. Мы научим вас считать в уме, как компьютер. Удивите скептических знакомых и вредных учителей!

Талантливый российский ученый Михайло Ломоносов, блиставший во многих научных областях, всегда считал математику своей любимой наукой, отлично приводящей в порядок ум. Современным людям в условиях ускоренных темпов жизни умение считать устно может здорово пригодиться.

Согласитесь, намного удобнее производить вычисления, не прибегая к помощи специальных устройств – это всегда экономия времени и денежных затрат. Более того, регулярные устные вычисления – отличная гимнастика для ума, а владение быстрым счетом обычно производит впечатление на тех, кто такой способности лишен.

Научиться считать в уме просто!

Некоторые из нас прекрасно справляются устно с такими математическими операциями, как: умножение двузначных чисел на однозначные, нахождение произведения в пределах 20 и перемножение несложных двузначных чисел. Для кого-то подобные быстрые вычисления составляют определенную трудность, и таких людей большинство. Часто человека к этому вынуждают обстоятельства, когда без навыка быстро считать в уме не обойтись. Обычно это математики по образованию или те, кому ежедневно приходится производить ставшие уже привычными арифметические расчеты.

Разнообразные способности, которые заложены практически в каждом при рождении, нуждаются в развитии и постоянной тренировке. Однако не так часто встречаются отдельные личности, поражающие быстротой решения сложных примеров, состоящих из трехзначных чисел. Обычному человеку бывает сложно совершить подобные действия даже в письменном варианте.

Дотянуться до таких высот реально, если научиться применять определенные разработанные учеными методики быстрого счета в уме. Чтобы в будущем радоваться результату, поражать окружающих живостью мышления, а также с целью выработки навыка устных вычислений — важны следующие элементы:

1. Приобретенные способности
Большую роль играют хорошая концентрация внимания и одновременное запоминание нескольких фактов, врожденные математические наклонности и способность логически мыслить (выделять важное, обращая внимание на второстепенное, приходя к выводам и имея доказательства).

2. Знание математических алгоритмов
Понимание математических законов, эффективные схемы вычитания и умножения должны быть заложены в памяти как результат многократного опыта. Такие алгоритмы должны при необходимости «вспоминаться» и оперативно использоваться.

3. Опыт, полученный путем регулярных тренировок
На скорость и успешный результат устного счета влияет постоянная тренировка внимания и памяти, постепенно усложняющаяся для решения задач.

Феноменальные способности и знание определенных формул не будут эффективно действовать без регулярного применения на практике. Потому «тренируйтесь» регулярно.

Методика визуального представления

Производя устные вычисления, можно помочь себе, как бы мысленно записывая их в воздухе перед собой. Запоминание промежуточных результатов в представляемых образах намного облегчает задачу счета. Эффективность будет достигаться с практикой не без следующих важных условий и умений:

  • Условие игры. Когда изобретательные родители хотят от ребенка успешного и более быстрого выполнения какой-то скучной задачи, им достаточно превратить обычный ежедневный учебный процесс в игру. Результат такой «игры» будет потрясающим. Если попытаться отыскать что-то необычное в любом самом привычном действии (в решении математических примеров в том числе), то заниматься умножением будет гораздо проще и эффективнее. При этом не забывайте, что игра должна всегда быть увлекательной и пробуждать у ребенка желание возвращаться к ней снова и снова.
  • Условие азарта . Чтобы во время игры не пропадала первоначальная увлеченность (азарт), важны ее установленные четкие правила.
  • Условие соперничества . Занимаясь в одиночку, труднее достигнуть нужного эффекта, чем соревнуясь с достойными соперниками. Осознание того, что кто-то сможет сделать лучше, заставляет стремиться к новым достижениям. Упражнения в устном счете формате небольшого коллектива дают результаты на порядок выше, чем зубрежка в одиночестве.
  • Условие фиксации личных достижений . Желание превзойти свои прежние достижения также толкает к новым вершинам. В связи с этим, фиксировать можно и скорость вычисления, и количество, и сложность примеров, решенных за определенную единицу времени.
  • Умение справляться со скучной работой . Необходимо научиться нормально воспринимать скучную, однообразную работу. Психологи рекомендуют находить разные методы борьбы со скукой. Подойдет даже изучение событий за окошком или переключение внимание на движение часовой стрелки.
  • Умение не воспринимать помехи . Если приучить себя не отвлекаться на окружающие шумы и помехи, концентрация внимания намного повысится. Есть люди, которые привыкли выполнять задания различной сложности и в небольших густонаселенных шумных квартирах, и в общежитиях, где невозможно остаться одному. Они не обращают внимания на помехи и способны выполнять решать все задачи, что от них требуются. Тренировать такую способность можно, специально — пытаясь делать вычисления при включенной музыке, телевизоре, в шумной компании.

Существует такое особое состояние (транс), когда вошедший в него человек концентрируется на чем-то определенном и перестает отвлекаться на окружающую обстановку и даже на сигналы собственного организма. В трансе возможно сохранение самой неудобной позы в течение длительного промежутка времени. Человек, увлеченный интересным чтением или сёрфингом в интернете, может не заметить, как затекла нога или шея. Повышенное внимание к содержанию книги или интернетной статьи отвлекло от сигналов, подаваемых организмом.

Чтобы быстро справляться с устным счетом, нужно уметь пользоваться целым набором коротких, но эффективных математических правил. Решение более сложных примеров упроститься, если использование представленных ниже правил станет автоматическим, практически мгновенным.

Полезные арифметические правила:

1. Вычитание

+ При отнимании 9 от любого числа из него вычитают 10 и добавляют 1:
N-10+1
321-9 = 321-10+1 = 312

+ При отнимании 8 от любого числа из него вычитают 10 и добавляют 2:
N-10+2
321-8 = 321-10+2 = 313

+ При отнимании 7 от любого числа из него вычитают 10 и добавляют 3:
N-10+3
321-7 = 321-10+3 = 314

2. Умножение и деление

+ Любые числа умножаются на 9 легко и просто: следует умножить заданное число на 10 (или просто приписать ноль), а от полученного числа отнять исходное:
Nх9 = Nx10 – N
63х9 = 630 – 63 = 567
Это самый быстрый способ произвести подобные вычисления. Его рекомендуем довести до полного втомата.

+ Некруглые числа умножаются на 2 таким нехитрым способом:
сначала их округляют до удобных для умножения ближайших значений. Например, если необходимо посчитать 149х2, то проще для начала умножить 150 на 2, а после вычесть из результата 2 (1х2 = 2 – ведь это 1 не хватало нам до 150). Итого получаем пример:
149х2 = 150х2 — (1х2) = 298

+ По схожему принципу можно делить на 2 некруглые числа: округляется число, которое делят на 2, и из него вычитают. Делим это число на 2-ку, отнимаем 1 (последняя цифра получена в процессе деления прибавленной 2-ки на 2-ку.
В результате деление 198 на 2 равняется: 200:2 – 2:2 = 100 – 1 = 99!

+ Умножение, как и деление на 4 и 8, соответствуют двукратному и трехкратному умножению и делению на 2 в каждом случае конкретном случае. Действия производятся последовательно, например:
26х4 = 26х2х2 = 52х2 = 104
88/8 = 88/2/2/2 = 44/2/2 = 22/2 = 11

+ Математики вывели закономерность, по которой умножение на 5 практически приравнивается к делению на 2. Пример: 33х5 = 165, 33:2 = 16,5
Из этого следует, что при умножении на 5 любого из чисел, его стоит разделить на 2, а после этого умножить на 10:
68х5 = 68:2х10 = 34х10 = 340

+ Чтобы умножить какое-то число на 25, иногда проще его разделить на 4, а после увеличить в 100 раз (или приписать два нуля). Ведь умножение на 25 отчасти эквивалентно делению на 4:
8х25 = 8:4х100 = 200

+ Неслабые трудности при вычислениях в уме представляет умножение двузначных и трехзначных чисел на однозначные. Чтобы справиться и с этим, необходимо разряды многозначных чисел перемножать по очереди (начиная слева направо). При умножении 54 на 3 для начала перемножаем 5 и 3, дописывая ноль (учтем, что это разряд десятков). После этого складываем результат с произведением 4х3.
54х3 = 5х3х10+4х3 = 150+12 = 162
Попробуем умножить на однозначное трехразрядное число:
541х3 = 5х3х100+4х3х10+1х3 = 1500+120+3 = 1623

Прогнозирование конечного результата при счете в уме

В операциях умножения, особенно если приходится оперировать многозначными числами, можно легко сбиться с толку и ошибиться с результатом. Во избежание этого нужно грамотно «прогнозировать» ответ.

  • Перемноженные между собой однозначные числа не дадут произведения, большего 81. Ведь 9х9 = 81.
  • При умножении двузначных чисел конечный итог не превысит 10 000, так как 99х99 = 9801.
  • Произведение двух трехзначных чисел не будет больше 1 000 000. Ведь 999х999 = 998001.
  • Важно помнить деление 1000 на 2, 4, 8, 16. Всегда пригодится держать в голове результат деления чисел, кратных 10 и чисел, кратных 2: 1000 = 2х500 = 4х250 = 8х125 = 16х62,5.

Перечисленные выше формулы являются основными для устного счета. Преодоление трудностей со сложными примерами — в регулярных упражнениях. Доведение до автоматизма арифметических операций позволит вам решать просто неподъемные для обычного человека математические задачки. Восхищайте своими интеллектуальными способностями окружающих!

Ссылка на основную публикацию
Adblock
detector